skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guth, Larry"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We show that a complete [Formula: see text]-dimensional Riemannian manifold [Formula: see text] with finitely generated first homology has macroscopic dimension [Formula: see text] if it satisfies the following “macroscopic curvature” assumptions: every ball of radius [Formula: see text] in [Formula: see text] has volume at most [Formula: see text], and every loop in every ball of radius [Formula: see text] in [Formula: see text] is null-homologous in the concentric ball of radius [Formula: see text]. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract We study the degree of an L-Lipschitz map between Riemannian manifolds, proving new upper bounds and constructing new examples. For instance, if $$X_k$$ is the connected sum of k copies of $$\mathbb CP^2$$for$$k \ge 4$$, then we prove that the maximum degree of an L-Lipschitz self-map of $$X_k$$ is between $$C_1 L^4 (\log L)^{-4}$$ and $$C_2 L^4 (\log L)^{-1/2}$$. More generally, we divide simply connected manifolds into three topological types with three different behaviors. Each type is defined by purely topological criteria. For scalable simply connected n-manifolds, the maximal degree is $$\sim L^n$$. For formal but nonscalable simply connectedn-manifolds, the maximal degree grows roughly like $$L^n (\log L)^{-\theta (1)}$$. And for nonformal simply connected n-manifolds, the maximal degree is bounded by $$L^\alpha $$ for some $$\alpha < n$$. 
    more » « less
  3. We prove an l^2L^6 decoupling inequality for the parabola with constant .logR/c. In the appendix, we present an application to the sixth-order correlation of the integer solutions to x^2 +y^2 = m. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. We obtain partial improvement toward the pointwise convergence problem of Schrödinger solutions, in the general setting of fractal measure. In particular, we show that, for $$n\geqslant 3$$ , $$\lim _{t\rightarrow 0}e^{it\unicode[STIX]{x1D6E5}}f(x)$$ $=f(x)$ almost everywhere with respect to Lebesgue measure for all $$f\in H^{s}(\mathbb{R}^{n})$$ provided that $s>(n+1)/2(n+2)$ . The proof uses linear refined Strichartz estimates. We also prove a multilinear refined Strichartz using decoupling and multilinear Kakeya. 
    more » « less